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Abstract

Among the methods which make it possible to establish a diagnosis on the operating condition of a mechanism, the

vibratory techniques seem very promising and are booming. The signals collected by accelerometers are the result of a

mixture of various sources each of which corresponds to operation of a component. The diagnosis and monitoring of each

component require the determination of the contribution of each source in the signal collected. The objective of this work

is to use and optimize the techniques applied to the inverse problems with the aim of quantifying the contribution of each

source in the obtained mixture, more particularly, the sources which are characteristic of a damaged element. However, the

inverse problems are generally unstable. These instabilities are often related to the errors of measurement or the parasites

contained in the signals and require methods of stabilization. This paper proposes a methodology, based on the restitution

of the sources. Thus, the methodology ensures the detection and the localization of a defect of a component by the

optimization of the position of a limited number of sensors. Two approaches are then proposed: the numerical approach

which employs an updated numerical model of the studied structure and the experimental approach based on the

correlation between the position of the sensors and the modal parameters of this same structure. The experimental

validation of this methodology is carried out on a casing made up of two bearings.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Predictive maintenance by vibratory analysis makes it possible to increase the productivity and to improve
one’s performance in terms of reliability, availability and security. This procedure of analysis implements the
techniques related to the dynamics of the structures and the signal processing [1,2]. Three levels of analysis are
currently used: (i) the monitoring carried out with global indicators, that makes it possible to observe possible
drifts of the level of vibrations, (ii) whose diagnosis is aimed at locating a damaged component and (iii)
monitoring of the quantification of variation of the failure severity. The vibratory signals resulting from
piezoelectric accelerometers represent the response of the structure to various excitations caused by the various
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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mechanical components. Thus, the aim of our work is to define the contribution of each excitation source in
order to quantify its severity. The separation of the sources starting from the measured signal requires the use
of inverse problems. However, the inverse problems are ill-posed problems in the sense of Hadamard [3]; they
are unstable during the inversion. Many works have studied the inverse problem for the indirect force
measurements. We can distinguish two main categories: the first one using mathematical methods and the
second one taking into consideration physical phenomena.

The mathematical tools are generally combined with the use of a large number of sensors [4,5]. These
sensors give rise to a mixture matrix whose singular value decomposition (SVD) offers a very interesting
mathematical base [6]. Within the framework of the vibrations, a first method, described by Powell in 1984 [7],
consists in cancelling the lowest singular values considered like noise. Romano [8] decided to reject the singular
values lower than 10% of the highest singular value. Elliott [9] and Thite [10] define the threshold according to
the level of the uncertainties of the measurements. A second method consists in regularizing these values. This
method was implemented by Nelson in 1998 [11] within the field of the indirect measurements of forces, and
recently by Kim [12] and Thite [10]. Hansen [13] proposes a method based on the visualization of the solution
norm according to the residue. This function forms an L whose corner corresponds to the optimal
regularization parameter (the L-curve principle), while Golub [14] proposes a performance index based on the
coherences between the measurements, the generalized cross validation (GCV) principle. However, according
to Lanczos [15], A lack of information cannot be remedied by any mathematical trickery. This statement proves
that the regularization methods allow to stabilize the problem but they skew the inversion. Even if the
regularization parameter is determined, these regularization methods can delete a source.

The tools, which use the physical phenomena, are inspired by the dynamic structures. Powell [7] shows that
two physically very close excitations generate similar deformations, particularly at low frequencies. This fact
makes the inversion unstable because of a dependence between the column vectors of the matrix. Fabunmi
[16], Hilary [17] and then Desanghere [18] define the existence of a link between the modal analysis of the
structure and the number of the determinable sources at a narrow band of frequency. They highlight that the
number of modes participating in the response of the structure must be equal or superior to the number of
sources. In particular, the restitution of the frequencies close to the resonance frequency is impossible because
only one eigenmode governs the structure, and this is all the more true as the structure is lightly damped.
Thanks to these remarks, Lee [19], then Hadjit [20], made a measurement selection which allowed to stabilize
the inversion. Lee [19] proposes a method based on the maximization of the norm of an undersquared matrix
obtained by the SVD. Hadjit [20] defines a new criterion to select the responses by considering the provision of
independent information deduced from the matrix of Fischer. Leclère [5] implements a strategy of weighting of
the mean squares based on the importance given to each response. It is thus possible to decrease the
importance of some vibratory responses positioned on vibration bellies, and to increase the importance if the
sensors are positioned on vibration knots. Other works studied the restitution of the frequencies close to the
resonance frequency. Lee [19] proposes to add an oscillating system to shift the resonance frequency. This
system modifies the structure: consequently, it modifies the resonances. However, this modification can be very
important, and it can significantly modify the required sources. Another procedure, implemented by Mas [21],
is based on the damping of the structure. Indeed, a damped structure has less acute resonance peaks, which
improve the stability.

This paper is inspired by these works, in order to implement the restitution of the sources related to the
damage of one or several components. However, some of the points are different from the previous studies.
The nature of the quantities to be restored are ‘‘accelerations’’, whereas the previous studies propose the
restitution of the forces. The reasons are that restored accelerations can be compared to measured ones and
that the measured quantities and the quantities to restore have the same order of magnitude. Then, we wish to
use a limited number of sensors and to optimize the restitution in narrow bands of frequencies around
characteristic frequencies of bearing defects. The objective is not to increase the quantity of the information
but the quality (given by the sensors). The previous studies have implemented a selection among several
sensors but they did not propose a mathematical model to optimize the position of the sensors. They describe
only some principles (a global repartition, to avoid a vibration knot). This is why this work determines a
relation between the modal parameters and the position of the observations giving place to conditioning maps.
These maps define the positions of the sensors. This relation avoids using the regularization methods which
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can delete sources, and the use of a narrow band of frequency avoids the resonance frequency. The method
described is compared to the regularization method using the L-curve principle. We established the
effectiveness of this method on a case which contains two main bearings.

2. Linear inverse problems in vibratory analysis

Inverse problems make it possible to restitute sources from observations. As far as we are concerned, they
allow to determine the vibratory sources from measurements realized by sensors. For this, knowledge of the
mathematical model of the direct problem is essential. The responses of a structure, yiðtÞ, are the convolution
products of the source time history, xjðtÞ, by the structure impulse ti;j, Eq. (1). In our case, the source time
history and the responses are parameters with the same unity, i.e. accelerations

yiðtÞ ¼ Sp
j¼1ti;jðtÞ � xjðtÞ; i ¼ 1; . . . ;m (1)

where p is the number of sources and m is the number of responses. � is the convolution product. This
expression is simplified in the frequency domain where it becomes a simple linear product,

YðoÞ ¼ TðoÞ:XðoÞ (2)

where YðoÞ, XðoÞ and TðoÞ are, respectively, the vector of the responses, the vector of the sources and the
transmissibility matrix. To compute XðoÞ, the problem, apparently simple, is to reverse the matrix TðoÞ.
However, the inversion suffers from instability which we are going to explain. This work uses the SVD which
transforms the transmissibility matrix,

T ¼ U:S:VH (3)

where U ¼ ðu1; . . . ; upÞ and V ¼ ðv1; . . . ; vmÞ are the orthogonal matrices of type ðp; pÞ and ðm;mÞ. VH is the
Hermitian transpose of V. S is a diagonal matrix whose elements are the singular values si of matrix T. The
orthogonal vectors vk are known as the right singular vectors, and, the orthogonal vectors uk are known as the
left singular vectors.

Without additive noise, sources are computed directly by inversing the mixture matrix, Eq. (4). However, a
linear system is often perturbed by noise. This is why the sources are computed thanks to a least squares
approach. The sources X are chosen so that the T:X is as close as possible to Y,

X ¼ V:S�1:UHY) minðkY� T:XkÞ (4)

2.1. Experimental and numerical constraints of inversion methods

Generally, the inversion methods are ill-posed problems, because the stability of the inversion is hard to
satisfy, whereas a well-posed problem satisfies three criteria [3]: the uniqueness, the existence and the stability
of the solution. Small errors on response data generate important errors on computed sources. If the matrix
can be reversed, the errors on X, dX, are defined by [22]

kdXk
kXk

pcðTÞ
kdTk
kTk
þ

1

cos y
kdYk
kYk

� �
þ cðTÞ2 tan y

kdTk
kTk

(5)

where cðTÞ is the condition number defined by

cðTÞ ¼ kTkkT�1k (6)

The angle ymeasures the gap between the vectors Y and TX, in other words, the size of the residue, kY� TXk.
Thus, if the residue (or y) is low, the ‘‘actual’’ conditioning is similar to cðTÞ; on the contrary, if the residue is
relatively high, the conditioning is in the order of cðTÞ2. Finally, if y is close to p=2, the solution is much lower
than the residue; the ‘‘actual’’ conditioning becomes unbounded even if cðTÞ is low. Reasonably, we consider
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that the residue is low, thus, Eq. (5) is simplified,

kdXk
kXk

pcðTÞ
kdTk
kTk
þ
kdYk
kYk

� �
(7)

This relation shows that the restitution errors mainly depend on the conditioning of the mixture matrix. A
high condition number signifies a badly conditioned matrix, and a low condition number signifies a well-
conditioned matrix. Thus, the inversion is stable for a small condition number.

To improve the stability and the quality of the inversion method, there are numerous methods that we have
mentioned in the introduction. Our aim is to suggest an optimal position of a limited number of sensors. The
suggestions will be compared with a regularization method proposed by Tikhonov [23], associated with the L-
curve principle [24] indicating the value of the regularization parameter. This regularization consists in
minimizing a performance index Jb, Eq. (8), which replaces the minimization given by Eq. (4)

Jb ¼ minðkY� TXk2 þ bkXk2Þ (8)

The term kY� TXk represents errors between the measured and computed responses. The second term is the
norm of input vectors with a weighting parameter b, obtained by a graphical method. The norm kXk is
represented according to kY� TXk in log–log. This curve forms an L whose angle corresponds to the optimal
value b.

3. Development of stabilization approaches

3.1. Inversion quality and numerical approach

3.1.1. Conditioning map

Historically, this approach was the first to be highlighted. The origin of this approach is a simple
questioning about the existence of areas where the position of the sensors would be favorable to the stability of
the inversion. According to the previous paragraph, a small condition number signifies a stable inversion.
However, the condition number depends on the mixture matrix, i.e., on the structure, and on the position of
the sensors and the sources. This is why the numerical approach generates maps of structure representing the
isovalues of condition numbers. These maps are called ’’conditioning maps’’, and they are determined for a
narrow band of frequency. Thus, the optimal positions are directly determined to make a stable inversion.

3.1.2. Procedure of the numerical approach

This approach requires a numerical model of the studied structure. The position of one sensor is regarded as
being a variable, while the other sensors are fixed on the structure. This variable sensor scans all the nodes. For
each node of the structure, the condition number is computed. Thus, good positions are highlighted and the
conditioning map is determined.

3.2. Inversion quality and experimental approach

3.2.1. Condition number and modal analysis

By definition, the condition number is written as

cðTÞ ¼ kTkkT�1k (9)

Hence

cðTÞ ¼
1

k detðTÞk
kTkkComðTÞtk with T�1 ¼

ComðTÞt

detðTÞ
(10)

ComðTÞt is the transpose of the adjugate matrix T. The relation in Eq. (7) shows us that we must obtain a
condition number close to 1 to reduce the propagation of the errors. However, this relation remains directly
unusable. We can simplify the problem and declare that the inversion will be stable if the denominator, detðTÞ,
is different from zero. This hypothesis requires an experimental validation which will be realized in the
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following sections. In such a case, Chiementin [25] has explained the relations between modal analysis and the
determinant of the matrix: if the number of dominant modes is lower than the sources, the condition number is
infinite, then the inversion is impossible. On the contrary, we have Eqs. (11) and (12), respectively, for a
number of sources equal to 2 and for a number of sources superior to 2

XM
j;k¼1;jok

1

DjDk

½fjðx1Þfkðx2Þ � fjðx2Þfkðx1Þ�½fjðy1Þfkðy2Þ � fjðy2Þfkðy1Þ�

�����
�����a0

$
(11)

with

Dl ¼ �o2Ml þ ioCl þ Kl

where Ml , Cl and Kl are the lth diagonal terms of the matrix of mass, of stiffness and of damping, expressed in
the modal base. fi is the eigenvector i. M is the number of dominant modes or the number of the modes
participating in the response, in the studied spectral band. xi and yi are, respectively, the source i and the
observation i

PM
k1;k2;...;kp¼1

1

Dk1
� � �Dkp

Fðx; k1; . . . ; kpÞ:Fðy; k1; . . . ; kpÞ

�����
�����a0; k1ok2o � � �okp; 8i; ki � N

where Fðx; k1; . . . ; kpÞ ¼
P

i¼1 to p
j¼0;1

ð�1Þjfk1
ðxiþðp�1ÞjÞfk2

ðxiþ1þðp�3ÞjÞ � � �fkp
ðxiþðp�1Þþðp�ð2p�1ÞÞjÞ

where Fðy; k1; . . . ; kpÞ ¼
P

i¼1 to p
j¼0;1

ð�1Þjfk1
ðyiþðp�1ÞjÞfk2

ðyiþ1þðp�3ÞjÞ � � �fkp
ðyiþðp�1Þþðp�ð2p�1ÞÞjÞ

The indexes for x and y are modulo p; p X3

6666666666666664
(12)

where the terms Fðx; k1; . . . ; kpÞ represent the sources, and the terms Fðy; k1; . . . ; kpÞ represent the
observations.
3.2.2. Procedure of the experimental approach

Thanks to the established inequality, the determinant of transmissibility matrix and the eigenmodes are
linked. This link makes it possible to increase the inversion stability. The principle is to use a limited number
of sensors by positioning them correctly. We have established an experimental procedure to determine the
optimal areas for the positioning of the sensors:
�
 to carry out the modal analysis of the structure;

�
 to determine the number of dominant modes for each characteristic frequency;

�
 to use the inequalities in Eqs. (11) and (12) by taking into account the possible simplifications, in order to

find optimal positions

�
 to position sensors in well-conditioned areas, thanks to the inequality determined.
4. Numerical and experimental validation

4.1. Definitions

We define ‘‘a real source’’, the physical cause which can excite the structure (a rolling bearing in this work).
Thus, a real source can contain one or several defects. We define ‘‘a virtual source’’, denoted as x, the setting
where the measured signal is the result of the operating state of only one real source. An observation, denoted
as y, is the setting where the measured signal is the result of the simultaneous operation of the real sources.
Thus, the position of a virtual source can be the position of an observation.
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4.2. Description of the test bench

The studied structure is a module laid out on a test platform originally made within a contract between the
state (France) and the region Champagne-Ardenne, called ‘‘SURVIB’’, SURveillance of industrial machines
by VIBratory diagnosis. This platform is composed of a concrete frame on which a steel-grooved plate is
incorporated, two modules with motors of 10 kW and modules to ensure study of mechanical components (a
module of detection for rolling bearings, a module of detection for gears, a module of fatigue for rolling
bearings, a module of fatigue for gears). The studied module is the module of detection for rolling bearings,
Fig. 1a. The module is composed of two 6206 rolling bearings which play the part of real sources. The rotation
is realized thanks to a motor module with a speed of rotation of 1500 rev/min. The two bearings are radially
loaded thanks to hydraulic jacks with a force of 5000N.

The numerical model was realized thanks to a finite element software. The casing is composed of 17,000
solid elements with 8 nodes and the shaft is realized with a 20 beam element, Fig. 1b. The rolling bearings are
integrated thanks to a toolbox realized and explained by Debray [26]. This toolbox is based on the model
suggested by DeMul, [27], which integrates the centrifugal forces in the resolution of the problem of static
balance of the bearings. The bearing is modeled with three types of elements: (i) Rigid beam elements with two
nodes, which model the incompressibility of the inner ring (IR) on the shaft. These elements connect the
neutral fiber of the shaft to the nodes of contact between the IR and the rolling elements. (ii) Beam elements
with two nodes, whose stiffness matrices are determined by iterations (model of DeMul), by solving the
problem of nonlinear balance related to the contacts between the rolling elements and the rings (theory of
Hertz) under the effect of the external loads applied. Each ball is thus modeled by an element with two nodes.
(iii) Lastly, the shell elements with 4 nodes represent the outer ring (OR) and operate the junction between the
elements with two nodes characterizing the rolling elements and the solid elements chosen for the casing. These
elements transmit all of the degrees of freedom to the casing. The numerical model is updated by minimizing
the performance index, f objective,

f objective ¼
X

j

f idj � f numj

f idj

 !2

þ
MACj;j � 100

100

� �2
0
@

1
A (13)

where

MACi;jðfnumi
;fexpj

Þ ¼
kfH

numi
fexpj
k2

kfH
numi

fnumi
kkfH

expj
fexpj
k

(14)

where f idj and f numj are, respectively, the jth identified frequency and the jth numerical frequency. fnumi
and

fexpj
are, respectively, the numerical eigenvectors and the eigenvectors determined by the modal analysis. The

diagonal matrix MAC is the modal assurance criterion. It defines the orthogonality of the modes. We can see
that the first resonance frequency for the casing is of 470Hz. This frequency has an important role in the
dominance of the modes.
Fig. 1. (a) Test bench, module of detection with rolling bearings; (b) updated model.
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The casing is instrumented to record 13 signals (Fig. 2). The 13 positions are denoted as V1–V13. The
direction of the load is symbolized by an arrow. These different channels will allow to test the areas which are
badly or well conditioned. There is no radial position because the shaft bearing is supposed to be inaccessible.
The signals are collected by data acquisition, Siglab, with 8192 points and with several sampling rates. The
spectra are obtained with an average of 10 acquisitions.
4.3. Real sources/virtual sources/observations

The real sources are the two rolling bearings. Each can have a defect on the OR, on the IR, on a ball or on
the cage. The first two defects are the most frequent, which is why we only study those. For a speed rotation of
1500 rev/min, the potential characteristic frequencies are 89.2Hz for OR and 135.8Hz for IR. These values are
given by the kinematics of the structure and by the geometry of the rolling bearing. As the number of real
sources are 2, two virtual sources are necessary. We highlight that the position of the virtual sources is not
always the setting where the exciting force is applied. We choose two virtual sources, whose positions are,
respectively, V1 and V2 (Fig. 2). The number of observations can be deduced from the number of real sources;
i.e. 2. A higher number of observations will be used in the following section in order to compare the proposed
approaches and the regularization methods. The first observation is selected in V3; the second is optimized for
the potential characteristic frequencies thanks to the proposed methods.
4.4. Numerical approach

The first approach consists in using an updated numerical model. We use the procedure described in Section
3.1.2. A sensor is fixed at V3 (Fig. 2). The second sensor scans all the nodes of the model. Thus, the
transmissibility matrix and the condition number are computed for each position. All the condition numbers
are reported in a ‘‘conditioning map’’ which is visualized by MEDIT1 This map is realized for the
characteristic frequencies of the potential defects, i.e. 89.2 and 135.8Hz (Fig. 3). The two maps obtained are
very similar and they show us areas of stability which are common. The similarity between these maps proves
that there is a frequency band where the dominant modes are identical. Indeed, the numerical study has shown
us that the maps are similar up to 380Hz, whereas the first resonance frequency is of 470Hz. This allows us to
have just one map for the 0–380Hz band called ‘‘global map’’. Thus, we can stabilize the inversion for the
characteristic frequencies and for several harmonics (178.4, 267.6, 356.8Hz).

Let us note that the experiment has shown that a good conditioning number is lower than 20. The
conditioning map describes areas where this condition is satisfied. The sensor must be placed in these areas,
called ‘‘well conditioned areas’’. On the contrary, the other areas must be avoided.
4.5. Experimental approach

The experimental approach is based on the procedure described in Section 3.2.2.
1Conceived and realized by the laboratory Jacques Louis Lions of the University Pierre et Marie CURIE.
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Fig. 3. Conditioning map for (a,c), 89Hz, (b,d) 115Hz. (a,b) Front view 3/4, faces 1 and 2. (c,d), Back view 3/4, faces 3 and 4.
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4.5.1. Research of the dominant modes

At first, we search the dominant modes. For this, we express the terms of the transmissibility matrix. These
terms are the transmissibility functions, deduced from the traditional transfer function, Eq. (15). They are
defined like the linear combination of eigenmodes [25], Eq. (16)

hxj!yi
ðoÞ ¼

Xn

k¼1

fkðxjÞfkðyiÞ

�o2Mk þ ioCk þ Kk

¼
DðyiÞ

F ðxjÞ
(15)

where F ðiÞ, DðiÞ and AðiÞ are, respectively, the force, the displacement and the acceleration in the frequency
domain for the i node.

txj!yi
ðoÞ ¼

AðyiÞ

AðxjÞ
¼
�o2DðyiÞ

�o2DðxjÞ
¼

DðyiÞ

F ðxjÞ
:
F ðxjÞ

DðxjÞ
¼

hxj!yi
ðoÞ

hxj!xj
ðoÞ

¼

PM
k¼1

fkðxjÞfkðyiÞ

�o2Mk þ ioCk þ KkPM
k¼1

fkðxjÞfkðxjÞ

�o2Mk þ ioCk þ Kk

¼
XM
k¼1

akðxj ;oÞfkðyiÞ (16)

As xj corresponds to a fixed position, txj!yi
only depends on yi. We can say that the determination of

akðxj ;oÞ allows to evaluate the contribution of each term. This determination simplifies the Eq. (16) to M 0
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terms (M 0pMÞ. The contribution of each eigenmode is directly deduced,

% contributionp ¼
kapðxi;oÞkPM
k¼1kakðxi;oÞk

(17)

To determine these contributions, we have performed a modal analysis which makes it possible to obtain the
modal parameters. These parameters are used to create a numerical model by expansion [28] thanks to the
SDT Toolbox of Balmès [29]. Then, the obtained model is excited through the nodes which represent the
interface between the rolling bearing and the casing in order to determine the transmissibility function. This
excitation is in the direction of the load.

The quadratic difference between the displacements obtained thanks to the excitation and the linear
combination of the modal deformations gives us the contribution of each mode. Table 1 shows us that these
contributions are almost similar for the two characteristic frequencies and a limit frequency of 380Hz. This
computation shows that two modes are dominant, 4 and 5, with a percentage of 54.6% and of 33.2%.
4.5.2. Conditioning maps

Secondly, we determine the optimal positions thanks to the expression, Eq. (11). The previous paragraph
reveals the dominance of two modes. Thus, the problem comes down to a problem with 2 dominant modes, 2
sources and 2 observations (M ¼ 2; p ¼ 2). The inequality in Eq. (12) is simplified in Eq. (18)

kðF4ðx1ÞF5ðx2Þ � F4ðx2ÞF5ðx1ÞÞðF4ðy1ÞF5ðy2Þ � F4ðy2ÞF5ðy1ÞÞka0. (18)

This inequality has two variables: F4ðy2Þ and F5ðy2Þ. The other terms are constant. The eigendeforma-
tions provide us with important information to simplify the inequality, (Fig. 4). The first term of the inequality
is different from zero because the eigendeformations give F4ðx1Þ ¼ �F4ðx2Þ and F5ðx1Þ ¼ F5ðx2Þ,
and hence:

kf4ðx1Þf5ðx2Þ � f4ðx2Þf5ðx1Þk ¼ kf4ðx1Þf5ðx2Þ þ f4ðx1Þf5ðx2Þk

¼ k2f4ðx1Þf5ðx2Þk

a0 (19)
Table 1

Contribution of each mode to the vibratory response

Mode 4 (%) Mode 5 (%) The others (%)

Contribution (for 89Hz) 54.6 33.2 12.2

Contribution (for 115Hz) 52.8 31.5 15.7

Contribution (for 380Hz) 57.1 35.7 7.2

(1)
(2)

(3)

(4)
φ4(y1)

Μοde 5Μοde 4

φ5(y1)

(5)

Fig. 4. Eigendeformations of modes 4 and 5, top view.
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The position of the sources is not detrimental to the stability of the inversion, and so, the position of the
sensors is defined by the relation:

kf4ðy1Þf5ðy2Þ � f4ðy2Þf5ðy1Þka0. (20)

In order to determine these optimal positions, several cases, which are indicated by numbers in Fig. 4, are
considered.
�
 The observation number 2 is positioned near the first observation: the eigendeformations are almost equal,
and so, Eq. (18) is canceled which creates a high condition number. This number is lower if the observation
number 2 moves away. This means that the observation number 2 must be preferably positioned on another
face of the casing.

�
 The observation number 2 is positioned in (1): in this case we have f4ðy1Þ ¼ -f4ðy2Þ and f5ðy2Þ ¼ f5ðy1Þ, so

f4ðy1Þf5ðy2Þ � f4ðy2Þf5ðy1Þ ¼ 2f4ðy1Þf5ðy1Þa0. The conditioning will also be good.

�
 The observation number 2 is positioned in (3): f5ðy2Þ ¼ 0, so

f4ðy1Þf5ðy2Þ � f4ðy2Þf5ðy1Þ ¼ �f4ðy2Þf5ðy1Þa0. The conditioning will be good.

�
 The observation number 2 is positioned in (5): f5ðy2Þ ¼ 0 and f4ðy2Þ ¼ 0 f4ðy1Þf5ðy2Þ � f4ðy2Þf5ðy1Þ ¼ 0.

The conditioning will be bad.

�
 The observation number 2 is positioned in (2) or (4): the difference seems to be unimportant because the

eigendeformations are almost similar but this example is more difficult to interpret. In (2), the condition
number will be good but not in (4). Mathematically, we have the following equalities: f4ðy2Þð2Þ ¼ f4ðy2Þð4Þ
and f5ðy2Þð2Þ ¼ �f5ðy2Þð4Þ. Thus, the inequality is not checked in case (4).

According to these different cases, we can state that it is sometimes difficult to interpret the well-conditioned
areas. Certain cases, like point (1) or (3), are easy to study. On the contrary, the difference between (2) and (4)
is more difficult to interpret. We can state that the face with the second source is a well-conditioned area. We
can add that the face with the first sensor must be avoided. This fact is logical: in practice, we would not
position the two sensors on the same face. The optimal positions deduced from the experimental approach
correspond to those obtained by the numerical approach. From now on, we can validate the concept of the
conditioning map by the restitution of the sources.
4.6. Restitution of the sources...

The two rolling bearings have a defect on the OR with a surface of 8mm2 and a defect on the IR with a
surface of 20mm2, whose characteristic frequencies are, respectively, 89.2 and 135.8Hz for the speed rotation
of 1500Hz. These defects have been generated by sparking erosion. They have an elliptic form to simulate the
distribution of the pression resulting from the contact between the rotating components determined by the
Hertz theory. We want to highlight the influence of the sliding which penalizes the restitution. Indeed, the
spectral peaks can slide off some frequential points. This is why it is necessary to make the measurements with
considerable precaution, to avoid these phenomena.

The temporal signals of the two virtual sources are presented in Fig. 5. The spectra of the virtual sources,
determined in Fig. 6, shows us all the characteristic frequencies of the defects, i.e. 89.2, 178.4, 267.6 and
356.8Hz, except the frequency at 135.8Hz certainly due to the axial position of the virtual sources.
4.6.1. ...from a well-conditioned area, WCA

The approaches proposed in this paper consist in positioning the second sensor in V4 for example. In this
case, we have temporal and spectral signals, respectively, in Figs. 7 and 8. Thus, the temporal signals of the
observations are the result of 4 defects from two rolling bearings. Let us note that the spectra do not have all
the characteristic frequencies. The peak for the frequency 135Hz does not exist on the spectrum of observation
2. For the 4 spectra of the virtual sources and of the observations, we distinguish two characteristic frequencies
close to 270Hz (the second harmonic of the defect IR and the third harmonic of the defect OR).
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The restitutions, Fig. 9, show good results for the characteristic frequencies included between 0 and 380Hz;
the errors do not exceed the value 3.1%. However, the frequency of 405Hz is prone to a bad restitution. Let us
note that the detection of a defect on IR is realized with only one harmonic because the fundamental on the
chosen virtual sources does not exist. This fact can be criticized for a reliable diagnosis.

4.6.2. ...from a badly conditioned area, BCA

From now on, we will perform a restitution from a badly conditioned area to show the necessity of a well-
conditioned area. For this, we choose the channel V6. The results of the restitution, Fig. 10 and Table 2, reveal
huge errors of restitution which do not allow to diagnose the presence of defects. The defect on IR is
impossible to diagnose for the rolling bearing 2 (source 2), because the fundamental frequency of 135.8Hz
does not exist because of the positions of the sources and the harmonic at 370Hz is not well restituted. The
defect on OR can be diagnosed on source 1 thanks to the fundamental and two harmonics: while we cannot
diagnose this defect on the second source, the characteristic frequencies are not well restituted or not restituted
at all.
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4.6.3. ...with an overdetermined system

The seven measurements, V3–V13, create the observation vector. The L-curve is plotted for a range of b in
Fig. 11. Thus, the regularization parameter b is determined, b ¼ 8:3. The results of restitution are presented in
Fig. 12 and in Table 2. The defects on OR and IR can be diagnosed on the two sources, even if there are some
errors of restitution for some characteristic frequencies: the fundamental at 90Hz on source 2 and the second
harmonic at 270Hz. The quantification of each frequency is acceptable; the maximal error is 15.1%. We can
see that the diagnosis of the defect on IR on source 1 is not reliable because the restituted harmonic at 270Hz
can correspond to the defect on OR and not to the defect on IR. Finally, we can highlight that the harmonic at
405Hz is well restituted for the two sources while this frequency is not in the stipulated frequency band by our
two proposed approaches.

4.6.4. Intermediary conclusion

The results of the restitution of the sources show the usefulness of the well-conditioned areas. This optimization
proves to be more efficient than the overdetermined methods with a regularization. But it is true that the proposed
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Table 2

Comparisons between the methods; 1 signifies not restituted

WCA 89.2Hz 135.8Hz 178.4Hz 267.6Hz 271.6Hz 356.8Hz 407.4Hz

BPFO BPFI 2xBPFO 3xBPFO 2xBPFI 4xBPFO 3xBPFI

Error x1 (%) þ0:9 – �2.3 þ1:1 þ0:9 þ1:5 1

Error x2 (%) – �2.8 0.2 þ2:2 �3.1 þ3:0 1

BCA 89.2Hz 135.8Hz 178.4Hz 267.6Hz 271.6Hz 356.8Hz 407.4Hz

Error x1 (%) 0.3 – 1 �5.6 �10.2 þ50:1 1

Error x2 (%) 1 – 1 1 1 1 9

Overdetermined 89.2Hz 135.8Hz 178.4Hz 267.6Hz 271.6Hz 356.8Hz 407.4Hz

Error x1 (%) 0.1 – �9.8 1 �3.3 þ2:2 �15.1

Error x2 (%) – – þ1:2 þ9:2 �4.5 þ14:7 �12.2

Errorð%Þ ¼
kxobs � xresk
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Fig. 11. L-curve principle, determination of the regularization parameter.
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approaches can appear to be difficult to use if we do not have a numerical model. Table 3 summarizes the
advantages and the disadvantages of our proposed approaches and of the overdetermined method.
5. Conclusions

This work fits into the scheme of a predictive maintenance by vibratory analysis. The aim is to separate the
contribution of the different vibratory sources recorded by a sensor. Thus, the inverse problems are implemented
within the framework of the quantification and the localization of the vibratory defects. In particular, this paper
introduced two approaches to stabilize the inversion of a linear problem in vibratory analysis. These two approaches
are based on the optimization of the position of a limited number of sensors in order to locate and to quantify the
vibratory sources linked to the damage of the rolling bearings. The optimization criterion is the condition number or
the determinant of the matrix of transmissibility. The first approach is a numerical approach which requires a
numerical model of the structure. It consists in computing the condition number for each configuration of sensors,
and all the results give a conditioning map showing us the optimal areas. The second approach is an experimental
approach that uses experimental modal analysis. An inequality is developed whose the resolution gives the optimal
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Table 3

Comparisons between the regularization method and the proposed approaches

Regularization with the L-curve method Sensor position

Sensor’s number Large number Equal to sources

Restitution In large band In narrow band

Restitution stability Good Very good

Implementation Easy Difficult
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positions. The use of these approaches is validated by restoring the vibratory sources arising from damaged rolling
bearings. Comparison with a method using an overdetermined system combined with a regularization method
reveals the validity of the proposed approaches.
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